Camille Mondon

Présentation or problème

Notion de canon rythmique

Conditions de Coven-Meyerowitz

Conjecture de Euglede

Pavages sur II

Canons de

Annexe

Canons rythmiques Conjecture spectrale

Milieux: interaction, interfaces, homogénéité, ruptures

Camille Mondon

MP - Informatique

Présentation du problème

Canons rythmiques Conjecture spectrale

Camille Mondo

Présentation du problème

Notion de canon rythmique

Conditions de Coven-Meyerowitz

Conjecture de Fuglede

et Z

A ====

Énoncé

Quels apports ont pu, et peuvent encore avoir les canons rythmiques sur des problèmes de pavage tels que la conjecture de FUGLEDE?

Positionnement thématique

Mathématiques (Algèbre, Analyse), Informatique (Informatique pratique)

Mots-clés

Théorie de Galois, Pavages de Z, Base de HILBERT

Table des matières

Canons rythmiques Conjecture spectrale

Camille Mondon

Présentation du problème

Notion de canon rythmique

Conditions de COVEN-MEYEROWITZ

Conjecture de Fuglede

Pavages sur $\mathbb R$ et $\mathbb Z$

Canons de Vuza Présentation du problème

2 Notion de canon rythmique

3 Conditions de Coven-Meyerowitz

4 Conjecture de FUGLEDE

5 Pavages sur \mathbb{R} et \mathbb{Z}

6 Canons de Vuza

7 Annexe

Notion de canon rythmique

Canons rythmiques Conjecture spectrale

Camille MONDO

Notion de canon rythmiaue

Conditions de Coven-Meyerowitz

Conjecture de Fuglede

et Z

Vuza

Définition 1

Un **canon rythmique** de période $n \in \mathbb{N}$ est <u>un c</u>ouple (A, B) de parties finies de \mathbb{N} (contenant 0) tels que $(a, b) \in A \times B \mapsto \overline{a + b} \in \mathbb{Z}/n\mathbb{Z}$ est bijective (on note $A \oplus B = \mathbb{Z}/n\mathbb{Z}$).

Définition 2

Si A est une partie finie de $\mathbb N$ contenant 0, alors on dit que A **pave** s'il existe $B \subset \mathbb N$ et $n \in \mathbb N$ tels que (A, B) soit un canon rythmique de période n.

Camille MONDO

Présentation problème

Notion de canon rythmique

Conditions de Coven-

Conjecture de

FUGLEDE

Canons de

Annexe

FIGURE –
$$A = \{0, 1, 3, 6\}, B = \{0, 4\}$$
 (période 8)

Représentation polynomiale

Canons rythmiques Conjecture spectrale

Camille Mondo

problème

Notion de

rythmique

Conditions de

Coven-

Conjecture de Fuglede

Fuglede Pavages sur ℝ

Canons de

Annexe

Définition 3

Soit A une partie finie non vide de \mathbb{N} . On note $A(X) = \sum_{k \in A} X^k \in \mathbb{Z}[X]$.

Remarques

- = A(1) = |A|;
- Si (A, B) est un canon rythmique de période n, alors $n = A(1) \cdot B(1)$.

Camille Mondo

problème Notion de

rythmique Conditions de

Coven-Meyerowitz

Conjecture de FUGLEDE

et Z

Vuza

ntation du Propriété 1

$$(A \oplus B)(X) = A(X) \times B(X)$$

Conséquence

(A, B) est un canon rythmique de période n si, et seulement si :

$$A(X) \times B(X) \equiv 1 + X + \ldots + X^{n-1} \pmod{X^n - 1}$$

spectrale

Conditions de

Polynômes cyclotomiques

Définition 4

Si $n \in \mathbb{N}^*$, Φ_n est le polynômes unitaire dont les racines sont les racines de l'unité d'ordre n.

Propriété 2

$$X^n - 1 = \prod_{d \mid n} \Phi_d$$

$$\Phi_n \in \mathbb{Z}[X]$$

$$\Phi_n = \left\{ \begin{array}{l} 0 \text{ si } n = 1 \\ p \text{ si } n = p^{\alpha}, p \in \mathcal{P}, \alpha \in \mathbb{N}^* \\ 1 \text{ sinon} \end{array} \right.$$

Conditions de Coven-Meyerowitz

Canons rythmiques Conjecture spectrale

Camille Mondor

Présentation du problème

canon rythmique

Conditions de Coven-Meyerowitz

Conjecture de Fuglede

Fuglede Pavages sur R

Canons de

Anneye

Définition 5

- $R_A = \{d \in \mathbb{N}, \Phi_d | A(X)\}$, $S_A \subset R_A$ réduit aux puissances de nombres premiers;
- \blacksquare (71): $A(1) = \prod_{s \in S_A} \Phi_s(1)$;
- (72): Si $s_1, \ldots, s_k \in S_A$ sont des puissances de nombres premiers distincts, alors $s_1 \ldots s_k \in R_A$.

Théorème 1 (COVEN-MEYEROWITZ, 1999)

- \blacksquare (A): [(T1) et (T2)] \Rightarrow A pave;
- \blacksquare (B1): A pave \Rightarrow (T1);
- (B2) (admis) : Si A pave et A(1) n'a que deux facteurs premiers, alors (T2).

Preuve

Conjecture de FUGLEDE

Canons rythmiques Conjecture spectrale

Camille MONDO

problème

Notion de canon rythmique

Conditions de Coven-Meyerowitz

Conjecture de Fuglede

Pavages sur $\mathbb R$ et $\mathbb Z$

Canons de

Annexe

Définition 6

- Soit $\Omega \subset \mathbb{R}^n$ un borélien de mesure non nulle. On dit que Ω pave \mathbb{R}^n par translations s'il existe un ensemble discret $T \subset \mathbb{R}^n$ tel que les ensembles $\Omega + t, t \in T$ soient disjoints et $\bigcup_{t \in T} (\Omega + t) = \mathbb{R}^n$ (noté $\Omega \oplus T = \mathbb{R}^n$);
- On dit que $\Omega \subset \mathbb{R}^n$ est **spectral** s'il existe $\Lambda \subset \mathbb{R}^n$ tel que $(x \mapsto e^{2\pi i < \lambda, x>})_{\lambda \in \Lambda}$ soit une base hilbertienne de $L^2(\Omega)$.

FIGURE – Un triangle n'est jamais spectral dans \mathbb{R}^2

Camille Mondon

Présentation de problème

Notion de canon rythmique

Conditions de Coven-Meyerowitz

Conjecture de Fuglede

Pavages sur I

Canons de

Anneve

Conjecture (FUGLEDE, 1974)

 $\Omega \subset \mathbb{R}^n$ est spectral si, et seulement s'il pave \mathbb{R}^n par translations.

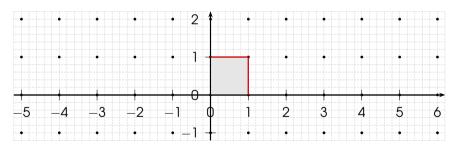


FIGURE – L'exemple le plus simple : $\Omega = [0,1[^2,\mathcal{T}=\mathbb{Z}^2 \text{ dans } \mathbb{R}^2 \text{ (Fourier)}$

Réfutation partielle

Canons rythmiques Conjecture spectrale

Camille Mondoi

Présentation du problème

Notion de canon rythmique

Conditions de Coven-Meyerowitz

Conjecture de Fuglede

et Z

Canons de

Vuza

Théorème 2 (TAO, 2003)

Il existe $\Omega \subset \mathbb{R}^5$ (union finie de cubes unitaires), qui soit spectral mais ne pave pas \mathbb{R}^5 .

Preuve

Remarque

Le sens "spectral \Rightarrow pave" est faux dès la dimension 3.

rythmiques spectrale

Remarque importante

A pave \mathbb{Z} si, et seulement si A + [0, 1] pave \mathbb{R} .

Liens entre (71) et (72) et le caractère spectral

Canons rythmiques Conjecture spectrale

Camille Mondon

Présentation du problème

Notion de canon rythmique

Conditions de Coven-Meyerowitz

Conjecture de Fuglede

et Z

Vuza

Théorème 3 (ŁABA, 2000)

- \blacksquare (71) + (72) \Rightarrow spectral;
- Spectral \Rightarrow (71).

Pave

$$71 \Leftrightarrow 71 + 72 \Rightarrow 72$$

Spectral

Camille Mondon

Présentation du problème

Notion de canon rythmique

Conditions de Coven-Meyerowitz

Conjecture de Fuglede

Pavages sur E

Canons de Vuza

Annexe

Définition 7

Soit (A, B) un canon de période $n, k \in \mathbb{N}^*$. Si $A' = A \oplus \{0, d, \dots, (k-1)d\}$, alors (A', B) est un canon de période kn (k-concaténation).

FIGURE –
$$A = \{0, 1, 4, 5\} = \{0, 1\} \oplus \{0, 4\}, B = \{0, 2\}$$

Canons de

Définition 8

- Une partie finie $A \subset \mathbb{N}$ non vide possède une **sous-période** s'il existe $A' \subset A$ et $k, d \ge 2$ tels que $A = A' \oplus \{0, d, \dots, (k-1)d\}$ (dans $\mathbb{Z}/n\mathbb{Z}$). (On a kd = n).
- Un canon (A, B) est dit **de Vuza** si ni A ni B ne possèdent de sous-période.

Théorème 4

On peut réduire récursivement tout canon (A.B) par déconcaténation appliquée à l'un des deux termes A ou B, soit à un canon de Vuza, soit au canon trivial ({0}, {0}).

Recherche de canons de Vuza

Canons rythmiques Conjecture spectrale

Camille Mondon

Présentation du problème

Notion de canon rythmique

Conditions de COVEN-MEYEROWITZ

Conjecture de Fuglede

Pavages sur II

Canons de

Annexe

Remarque

Il existe un canon de Vuza de période n si, et seulement si $n=p_1p_2n_1n_2n_3$ avec p_1,p_2 premiers, $n_1,n_2,n_3\geq 2$ et $n_1p_1\wedge n_2p_2=1$.

```
>>> periodeVuza(500)
[72, 108, 120, 144, 168, 180, 200, 216, 240, 252, 264, 270, 280, 288, 300, 312, 324, 336, 360, 378, 392, 396, 400, 408, 420, 432, 440, 450, 456, 468, 480]
```

Camille Mondon

Présentation du problème

Notion de canon rythmique

Conditions de Coven-Meyerowitz

Conjecture de Fuglede

Pavages sur R

Canons de

Annexe

Propriété 3

Si $n = p_1 p_2 n_1 n_2 n_3$, on pose :

$$K_1 = n_2 n_3 \cdot ([|0, p_2 - 1|] \oplus p_2 n_1[|0, p_1 - 1|])$$

$$K_2 = n_1 n_3 \cdot ([|0, p_1 - 1|] \oplus p_1 n_2 [|0, p_2 - 1|])$$

$$A = n_3 \cdot (p_2 n_2[|0, p_1 - 1|] \oplus p_1 n_1[|0, p_2 - 1|])$$

$$B = K_1 \cup T_1(K_2) \cup \ldots \cup T_{n_3-1}(K_2)$$

où $T_j(K_2) = \{j\} + K_2$ (translation par j). Alors (A, B) est un canon de VUZA de période n.

Camille Mondo

Présentation du problème

Notion de canon rythmique

Conditions de COVEN-MEYEROWITZ

Conjecture de Fuglede

Pavages sur II

Canons de Vuza

nnexe

```
>>> Vuza(2,3,2,3,2)
([0, 8, 16, 18, 26, 34],
[0, 1, 5, 6, 12, 25, 29, 36, 42, 48, 49, 53])
>>> canon([0,8,16,18,26,34],[0,1,5,6,12,25,29,36,42,48,49,53])
True
```

Algorithme crible

Canons rythmiques Conjecture spectrale

Camille Mondon

Présentation du problème

Notion de canon rythmique

Conditions de Coven-Meyerowitz

Conjecture de FUGLEDE

Pavages sur R

Canons de

Annexe

Algorithme periode Vuza

Canons rythmiques Conjecture spectrale

Camille Mondo

problème

Notion de canon rythmique

Conditions de COVEN-MEYEROWITZ

Conjecture de Fuglede

Pavaaes sur II

Canons de Vuza

Annexe

```
def periodeVuza(n):
    P=bool to num(crible(n))
    H=[False] *n
    k=0
    while k<len(P) and P[k]<n:
        p1=P[k]
        1=k
        N=rol
        while 1<len(P) and N*P[1]<n:
            p2=P[1]
            n1=2
            N*=p2
            while N+n1<n:
                 n2=2
                 N_{\star}=n1
                 while N+n2<n:
                     n3=2
                     N*=n2
                     if gcd(p1*n1,p2*n2)==1:
                          while N*n3<n:
                              N_{+}=n3
                              H[N]=True
                              N//=n3
                              n3+=1
                     N//=n2
                     n2+=1
                 N//=n1
                 n1+=1
            N//=p2
            1+=1
    return bool_to_num(H)
```

Camille MONDON

Présentation du problème

Notion de canon rythmique

Conditions de Coven-Meyerowitz

Conjecture de FUGLEDE

FUGLEDE

Canons de

Annexe

```
def Vuza(p1,p2,n1,n2,n3):
    P1,P2=[1]*p1,[1]*p2
    N1,N2,N3=[1]*n1,[1]*n2,[0]+[1]*(n3-1)

K1=fois(n2*n3,plus(P2,fois(p2*n1,P1)))
K2=fois(n1*n3,plus(P1,fois(p1*n2,P2)))

A=fois(n3,plus(fois(p2*n2,N1),fois(p1*n1,N2)))
B=union(plus(N3,K2),K1)

return bool_to_num(A),bool_to_num(B)
```

Camille Mondo

Présentation du problème

Notion de canon rythmique

Conditions de Coven-Meyerowitz

Conjecture de Fuglede

Pavages sur 1

Canons de

Annexe

```
def canon(A,B):
    n=len(A)*len(B)
    S=bool_to_num(plus(num_to_bool(A),num_to_bool(B)))
    for k in range(len(S)):
        S[k]= S[k]%n
    return sorted(S)==list(range(n))
```