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A multivariate data set for which each variable can be interpreted as part of a whole is called a composi-
tional data set. In that case, it is preferable to decrease by one the dimension and consider it as embedded
in the simplex, which is equipped with its own Euclidean structure.

Thus, adapting a method such as Invariant Coordinate Selection (ICS) to compositional data is an in-
teresting challenge since ICS has proved itself useful on classical multivariate data sets to reveal hidden
structures such as outliers or groups, but cannot be applied as such on the simplex. This internship
report summarises the main aspects of compositional data analysis and algebra, in order to adapt the ICS
method to outlier detection for compositional data.
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Introduction

Context & goals

This report summarises the advancements that have been made during my research internship at TSE-R,
between May 2021 and August 2021, under the supervision of Pr. Anne Ruiz-Gazen, with the collaboration
of Pr. Christine Thomas-Agnan and Thibault Laurent.
The aim of my internship was to prepare the foundation for the redaction of a publication on the following
matter: ‘Outlier detection using the Invariant Coordinate Selection method for compositional data’.
The first step was to learn the basics of compositional algebra and data analysis, which are Christine
Thomas-Agnan’s research interests; the second step was to understand the Invariant Coordinate Selection
method, which relies on the concepts of scatter operators and kurtosis, and was conceived during Anne
Ruiz-Gazen’s thesis; the third step was to adapt the latter to the former, and to develop a good sense of
what could be adapted, what needed to be changed and what could not work when moving from general
multivariate data to compositional data.

Application to the BDDSegX data set

Once the foundations are laid, the idea was to apply the newly conceived method to a real data set (by
designing - for instance - an R package called ICSCoDa) to test the validity of the results that were found
on this particular data set, and to interpret this compositional data set thanks to the Invariant Coordinate
Selection method.
The BDDSegX data set on the automotive market was chosen to illustrate the notions and compare the
methods that were exposed. This data set was generated by Christine Thomas-Agnan and Joanna Morais
and contains (among other variables) the monthly evolution from 2003 to 2015 of each volume of the
five-segment car classification according to their size (from the A-segment regrouping city cars to the
E-segment regrouping executive cars), with a total of 152 observations.
It is relevant to see this data set as compositional data, provided of course that one is not interested in
studying the variation of the total volume of the automotive market.
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Notations

• S D = {
(x1, . . . , xD )⊤ ∈R∗+

D ,
∑

1≤i≤D xi = 1
}

is the simplex in dimension D , and its elements are called
compositions.

• If z ∈R∗+
D , C (z) is the unique composition which is collinear to z.

• x = (x1, . . . , xD )⊤ and y = (
y1, . . . , yD

)⊤ are two compositions.

• x⊕y =C
((

x1 y1, . . . , xD yD
)⊤)

is the Aitchison addition (or perturbation).

• If α ∈R, α⊙x =C
(
(x1

α, . . . , xD
α)⊤

)
is the Aitchison scalar multiplication (or powering).

• 〈x,y〉a = 1
D

∑
1≤i< j≤D ln

(
xi
x j

)
ln

(
yi

y j

)
is the Aitchison inner product.

• B = (e1, . . . ,eD−1) is an orthonormal basis of S D , ilr and V are respectively its associated transfor-
mation and its contrast matrix.

• 1D = (1, . . . ,1)⊤ ∈RD is the vector whose entries are all ones, ID denotes the D ×D identity matrix,
and GD denotes the D ×D-matrix ID − 1

D 1D 1D
⊤.

• X is a random variable on RD , whose distribution function is F X : B
(
RD

) → R, and if absolutely
continuous with respect to the Lebesgue measure, its probability density function is f X :RD →R.

• (X1, . . . ,Xn) are independent random variables such that each one follows the distribution F X, and
that represent the statistical observations.

• If θ is a parameter of the distribution function of X, we will use as often as possible the notation θ̂ for
an estimator of θ, except in particular for E [X] (estimated by the sample mean X j ) and the variance
V [X] (estimated by the sample variance matrix Σ̂= Σ̂ (X1, . . . ,Xn)). We will omit the dependence on
X1, . . . ,Xn as often as possible.

5



1 Prerequisites

1.1 Multivariate outlier detection and ICS

A common problem in multivariate data analysis is that of detecting outliers in a contaminated data
set. If we denote (X1, . . . ,Xn) the set of independent observations of a random variable X on RD , we
need to model a contamination process from the original uncontaminated random variable X0 to the
contaminated X.
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Figure 1.1: n = 150 points generated from a Gaussian mixture model with D = 2, q = 3, (ε1,ε2) = (0.05,0.05).

There are many ways to design contaminated data, among them to model the data generating pro-
cess (DGP) by a convex combination (called a mixture) of the original distribution function with other
distributions modelling the outliers:

F X = (1−ε)F0 +
k=q∑
k=1

εk Fk
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where F0 = F X0 , ε=∑k=q
k=1 εk is the theoretical proportion of outliers in the data and if 1 ≤ k ≤ q , Fk denotes

the distribution function of the kth cloud of outliers.

Example 1.1. Figure 1.1 gives a scatter plot of n = 150 observations generated in D = 2 dimensions from a
mixture of q = 3 Gaussian distributions with ε= 0.1, ε1 = 0.05 and ε2 = 0.05. The two groups of outliers are
clearly visible on this plot. But this may not be the case when the dimension D is larger than 3.

1.1.1 Elliptical distributions

The outlier detection method studied in this report relies on the lack of elliptical symmetry of the contam-
inated distribution, so we have to properly define elliptical distributions, which are a generalization of
normal distributions.

Definition 1.1 (Elliptical distributions). Let µ be a vector of RD and Σ ∈ RD×D a positive semi-definite
symmetric matrix. A random variable X is said to follow a

(
µ,Σ

)
-elliptical distribution if there exists a

random variable such that:

(i) X =Σ 1
2 Z+µ;

(ii) Z has a spherical distribution, meaning that for every orthogonal matrix Q the equality of distribu-
tion functions Z ∼ Q Z holds.

Example 1.2.

• The multivariate Gaussian distribution with meanµ and covariance matrixΣ is the most well-known
elliptical distribution.
Figure 1.2 gives a scatter plot of n = 150 observations generated in two dimensions with parameters

µ=
(

5
1

)
and Σ=

(
2 1
1 2

)
. The ellipse corresponds to a quantile of order 0.98.

• Other distributions such as the multivariate Student distributions also belong to the family of
elliptical distributions.

Remark. For an elliptical distribution X, the vector parameter and the matrix parameter are uniquely
defined by the distribution function of X, and in particular are functions of X denoted respectively by µ [X]
and Σ [X].
This fact can be simply illustrated in the case of absolutely continuous elliptical distributions, since the
density function is determined by its values on the Σ-shaped ellipses around µ (see the following result,
cited in (Tyler et al. 2009)).

Proposition 1.1. An absolutely continuous
(
µ,Σ

)
-elliptical random variable X on RD has a density function

verifying, for every x in RD :

f X (x) =CD det(Σ)−
1
2 g

((
x−µ)⊤

Σ−1 (
x−µ))

where g :R+ →R+ is a non-negative function and CD ∈R∗+ is a constant.
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Figure 1.2: n = 150 points generated from a normal distribution with µ=
(

5
1

)
, Σ=

(
2 1
1 2

)
.

1.1.2 Location operators and scatter functionals

As elliptical distributions generally do not admit first and second moments, it is necessary to define
generalized notions of expectation (location) and variance (scatter).

Definition 1.2. A location m is an operator from a subspace of random variables on RD onto RD which
verifies the following two properties of the usual expectation E, for all random variables X and Y in the
considered subspace, and every non-singular matrix A ∈RD×D and b ∈RD :

(i) if X ∼ Y, m [X] = m [Y] (dependent on the distribution only);

(ii) m [AX+b] = Am [X]+b (affine equivariant).

A scatter S is a functional from a subspace of random variables on RD onto the convex cone of positive-
definite matrices RD which verifies the following two properties of the usual (co-)variance V, for all
random variables X and Y in the considered subspace, and every non-singular matrix A ∈ RD×D and
b ∈RD :

(i) if X ∼ Y, S [X] = S [Y] (dependent on the distribution only);

(ii) S [AX+b] = AS [X]A⊤ (affine equivariant).
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Naturally, the subspace of elliptical distributions is stable under any affine transformation of RD and on
this space, the vector parameter µ defines a location operator while the matrix parameter Σ defines a
scatter functional. There is a converse result (cited in (Tyler et al. 2009)):

Proposition 1.2. A location operator m and a scatter functional S defined on a subspace containing the
elliptically distributed random variables on RD , have to verify for every elliptically distributed random
variable X:

m [X] =µ [X] and S [X] =λΣ [X]

where λ ∈R+ is a constant depending on the distribution function of X.

Proof. Let X be a
(
µ,Σ

)
-elliptically distributed random variable on RD , and Z a random variable as in

Definition 1.1. Then if Q is an orthogonal matrix:

• m [Z] = m [QZ] = Q m [Z] i.e. m [Z] = 0 (for Q =− ID ), so m [X] = m
[
Σ

1
2 Z+µ

]
=µ.

• S [Z] = S [Q Z] = QS [Z]Q⊤ i.e. S [X]Q = QS [X] i.e. S [Z] =λ ID for a λ ∈R+ (by showing for instance

that S [Z] must stabilize every line), so S [X] = S
[
Σ

1
2 Z+µ

]
=Σ 1

2

(
Σ

1
2

)⊤ =Σ.

Remark. Note that for a given elliptical distribution (generally the Gaussian distribution) and a given
scatter matrix, the constant λ can be calculated and used to define a scatter matrix equal to the scatter
parameter (see the example below).

An important scatter functional, other that V, is the scatter matrix of fourth order moments:

V4 [X] = 1
D+2E

[
(X−E [X]) (X−E [X])⊤V [X]−1 (X−E [X]) (X−E [X])⊤

]
which is defined (for instance by Archimbaud, Nordhausen, and Ruiz-Gazen (2018a)) for random variables
admitting the first four moments, and will be particularly useful for the ICS outlier detection method.
Note that the constant D + 2 has been calculated in order to verify that V4 [X] = Σ [X] for a Gaussian
distribution.

As usual in statistics, we consider a sample (X1, . . . ,Xn) which is a set of independent and identically
distributed random variables. We work conditionally to the observations (X1, . . . ,Xn), which in that case
amounts to treating them as constants. We will use estimated location operators m̂ (X1, . . . ,Xn) and
estimated scatter functionals Ŝ (X1, . . . ,Xn) which can be defined from the particular case of Definition 1.2
when the random variables X and Y are discrete (their probability distribution function is the empirical
distribution function of the observations).
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Figure 1.3: BDDSegX data set (volumes), original.
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Figure 1.4: BDDSegX data set (volumes), whitened.
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1.1.3 Whitening matrices and Mahalanobis distance

A first method to detect outliers is to center and whiten the data, which means applying a non-singular
matrix Ŵ such that the transformed data set:(

Z1 . . . Zn
)= Ŵ

(
Y1 . . . Yn

)
(where Y j = X j − m̂ (X1, . . . ,Xn) ,1 ≤ j ≤ n) has an estimated location m̂ (Z1, . . . ,Zn) = 0 and an estimated
scatter Ŝ (Z1, . . . ,Zn) = ID (standardized and decorrelated).
If Ŵ is a positive-definite matrix, applying this transformation corresponds to a change of inner product
and of Euclidean norm, meaning for x in RD :∥∥Ŵx

∥∥=
√(

Ŵx
)⊤ (

Ŵx
)=√

x⊤Ŵ
2x

The most common choice is Ŵ = Ŝ
− 1

2 (the inverse square root of a scatter functional evaluated on the
observations) which corresponds to what we will call the ‘Mahalanobis transformation’. The distance
associated to this transformation is called the ‘Mahalanobis distance’ (from the work of Mahalanobis
(1936)).
This transformation can be applied to an absolutely continuous mixture model of elliptical distributions,
for which the outliers will be the observations X j ,1 ≤ j ≤ n such that:∥∥Z j

∥∥=
∥∥∥Ŝ

− 1
2
(
X j −m̂

)∥∥∥≥Q
(
p

)
where Q is the quantile function of the uncontaminated elliptical distribution X0 (i.e. the generalized
inverse of the cumulative distribution function associated with the function g defined in Proposition 1.1)
and p ∈ (0,1) is the level of confidence required.
When second order moments exist, we can choose for Ŝ the sample (co-)variance matrix Σ̂ and for m̂ the
sample mean. This allows an interpretation of the newly defined variables (Z1, . . . ,Zn) by computing the
(co-)variance matrix with the original variables (X1, . . . ,Xn):

Σ̂(Zi ,X j ) = Ŵ
−1 = Σ̂ 1

2 (since Σ̂ (Y1, . . . ,Yn) = I
D

)

or the correlation matrix:

ρ̂(Zi ,X j ) =


(
Ŵ

−1
)

i , j√∑
1≤k≤D

(
Ŵ

−1
)2

k, j



Example 1.3. Figure 1.3 and Figure 1.4 give matrix scatter plots for the BDDSegX automotive market
example. The original volumes V1, . . . ,V5 are plotted on the upper graph and exhibit some correlations,
while the whitened date Z1, . . . ,Z5 can be found on the lower graph and have a zero mean vector and a
sample (co-)variance matrix equal to the identity.
Note that the dark blue corresponds to the beginning of the period (2003) and becomes lighter as the
years go by in order to visualize also the temporal aspect of the data.
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As the outliers are isolated due to their large deviation with respect to the estimated location, two problems
emerge.

(1) The first problem is the impact of the outliers on the computation of the estimated location and
scatter (and of the quantile function of the unknown uncontaminated distribution). This problem
can be solved by using robust estimators (see (Tyler et al. 2009)) but is not considered further in the
present report.

(2) The second problem is that this method implicitly assumes that outliers are the observations
deviating most from the average. If outliers were defined according to another model, such as
the elliptical mixture model, it would produce false positives (observations that were part of the
uncontaminated distribution are detected as outliers) or false negatives (observations that were
part of the outlier clouds are not detected).

1.1.4 The Invariant Coordinate Selection method

The general idea of ICS is to exploit the differences between two scatter operators evaluated at X to
deduce a lack of ellipticity of the contaminated distribution, and then find projection directions that helps
highlighting the outliers.

2 3 4 5 6 7 8

−4

−2

0

2

4

X_1

X
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−
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−
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−2

0

2

4

X_1

X
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Figure 1.5: Computation of COV (blue) and COV4 (red) ellipses for an elliptical (left) and a non-elliptical (right)
distribution.

Figure 1.5 illustrates the fact that for a Gaussian distribution the two scatter matrices V and V4 are the
same (left panel). But when considering a contaminated distribution, such as the one of Figure 1.1, the
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two scatter matrices differ as can be noticed on the right panel of Figure 1.5 where the ellipse associated
with V4 (in red) is elongated in the area where the outliers lie, compared to the ellipse associated with V
(in blue).
For distribution functions admitting the first four moments, the most common choice as the scatter pair
is indeed (V,V4), which corresponds to the Fourth Order Blind Identification (FOBI) algorithm known
since 1989 in the Blind Source Separation literature (see (Cardoso 1989)).
Generally speaking, comparing two estimated scatter matrices:(

Ŝ1, Ŝ2
)= (

Ŝ1 (X1, . . . ,Xn) , Ŝ2 (X1, . . . ,Xn)
)

is done by simultaneous diagonalization, which is closely related to the diagonalization of Ŝ
−1
1 Ŝ2 (as we

will see at the end of this paragraph).

In order to do this, the natural idea is to symmetrize Ŝ
−1
1 Ŝ2 through conjugation by Ŝ

− 1
2

1 which results in

the similar positive-definite matrix A = Ŝ1
− 1

2 Ŝ2 Ŝ
− 1

2
1 that can be diagonalized as usual:

⊤
QA Q =∆

where Q is an orthogonal matrix and ∆ is diagonal with decreasing eigenvalues
(
ρ1, . . . ,ρD

)
, so that when

defining the non-singular matrix H = Ŝ
− 1

2
1 Q:

⊤
HŜ2 H =∆ and

⊤
HŜ1 H = I

D

Remark. Since H is not orthogonal, this is not a proper diagonalization of matrices, but must be under-
stood in terms of bilinear forms associated to the matrices Ŝ1 and Ŝ2: this simultaneous diagonalization
can be reinterpreted as replacing the canonical inner product by that associated to Ŝ1 (for which H is now
orthogonal and Ŝ2 is still positive-definite).

What is gained compared to the Mahalanobis transformation is that after performing the change of
inner product according to a scatter operator, another scatter is diagonalized according to the new inner
product.

1.1.4.1 Computing the Invariant Coordinates

The change of Ŝ1-orthogonal basis:

(
Z1 . . . Zn

)= ⊤
H

(
X1 −m̂ . . . Xn −m̂

)
is the first step of the method, and the coordinates of the Z j ,1 ≤ j ≤ n are called ‘Invariant Coordinates’
because even though H is not unique (as eigenvectors are not unique), once chosen a way to compute
one solution H, the transformed data set is affine invariant up to the sign of the Z j ,1 ≤ j ≤ n.
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Figure 1.6: Invariant Coordinates of the BDDSegX data set (volumes), and the correlation matrix of the original data
with the transformed data.
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Figure 1.7: Eigenvalues of V [X]−1V4 [X] and projection on IC.1 and IC.2 of The Invariant Coordinates of the
BDDSegX data set (volumes).
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1.1.4.2 Selecting the Principal Components

According to the value of the spectrum
(
ρ1, . . . ,ρD

)
of Ŝ

−1
1 Ŝ2, we determine the components on which

outliers must be looked for.
There are several ways to proceed, but the general idea is that since the spectrum is a measure of kur-
tosis of the distribution in various directions, we must keep the directions where the eigenvalues are
substantially different from 1 (which means the distribution departs from an elliptical distributions in
these directions). Eigenvalues larger than 1 are usually associated with invariant coordinates that help
to detect small clusters of outliers, while eigenvalues smaller than 1 are associated with large clusters
of outliers (see Theorem 3 from (Tyler et al. 2009) for a theoretical justification of the method under a
particular Gaussian mixture model).
The ICSOutlier R package by Archimbaud, Nordhausen, and Ruiz-Gazen (2018b) suggests using nor-
mality tests such as D’Agostino’s tests, which are based on estimation of the skewness and the kurtosis of
the invariant components.
This is the step where the ICS method differs from the method presented in Section 1.1.3. Without
projecting on a strict subspace, the next step will be identical to the Mahalanobis criterion for outlier
detection.

1.1.4.3 Detecting the outliers
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Figure 1.8: Outliers in selected Invariant Coordinates of the BDDSegX data set (volumes).

Just as for the Mahalanobis distance, outliers can be detected by computing the ICS distances (i.e. the
norms of the transformed observations).
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Example 1.4. Let us illustrate shortly the ICS procedure on the data set BDDSegX. On Figure 1.6, we can
see that some observations look quite far from the main bulk of the data on the first component IC.1
(see also the zoomed-in Figure 1.7). And this component to an eigenvalue larger than 1. Plotting the
ICS distances calculated with IC.1 leads to Figure 1.8 where outliers are all identified around 2010. The
correlations of IC.1 with original volumes are given on Figure 1.6. IC.1 is positively correlated with the
small volumes VA and VB meaning that because of the economic crisis of 2008, people have been more
inclined to buy small cars.

1.2 Compositional data analysis

This section summarises the basics of compositional linear algebra and data analysis, as presented in
(Pawlowsky-Glahn, Egozcue, and Tolosana-Delgado 2015).

1.2.1 Simplex of compositions, structure and isometries

Definition 1.3 (Simplex S D ). We define

S D =
{

(x1, . . . , xD )⊤ ∈R∗
+

D ,
∑

1≤i≤D
xi = 1

}

as the simplex in dimension D , and its elements are called compositions.

X_1 X_2

X_3

Figure 1.9: The triangle S 3.
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It is equipped with the following structure, for x and y in S D and α in R:

• x⊕y =C
((

x1 y1, . . . , xD yD
)⊤)

(Aitchison perturbation)

• If α⊙x =C
(
(x1

α, . . . , xD
α)⊤

)
(Aitchison powering)

• 〈x,y〉a = 1
D

∑
1≤i< j≤D ln

(
xi
x j

)
ln

(
yi

y j

)
(Aitchison inner product)

where C is denotes the closure operator, which maps a z ∈ R∗+
D to the unique composition which is

collinear to z.

Due to the interpretation of compositions’ coordinates as ratios of a whole, the classical metric is not
the most relevant. That explains why we define these particular operations, and use a logarithmic
transformation to measure distances.
The next theorem is fundamental because it provides two kinds of isometries between the simplex and
Euclidean spaces of dimension D −1 that we will be using extensively; it was proved in Chapter 4 of the
book by Pawlowsky-Glahn, Egozcue, and Tolosana-Delgado (2015).

Theorem 1.1. The simplex S D with Aitchison’s structure is an Euclidean space of dimension D −1, thus
it is isometric to any Euclidean space of dimension D −1, for these particular isometries, respectively the
‘centered logratio’ and the ‘isometric logratio’:

• clr :
S D → H = ker

{
x 7→∑i=D

i=1 xi
}

x 7→
(
ln

(
x1

g (x)

)
, . . . , ln

(
xD

g (x)

))⊤ , where g : x 7→ D
√∏i=D

i=1 xi

• ilrB :
S D → RD−1

x =∑i=D−1
i=1 xi

∗ei 7→ x∗ = (x1
∗, . . . , xD−1

∗)
, where B = (e1, . . . ,eD−1) is a given orthonormal

basis of S D .

The clr isometry is canonical in the sense that it does not require constructing an orthonormal basis (the
inner product on S D has been designed to match the clr transformation), but it is not surjective from
S D onto RD−1.
On the contrary, the ilrB isometries are indeed bijective from S D to RD−1, but they are not canonical
since there is no natural choice for an orthonormal basis of S D .
We must then verify that every construction we make using the ilrB transformation is independent of the
basis B and also meaningful when considered directly on the simplex. The contrast matrices will be a
helpful tool especially to prove this kind of results:

Definition 1.4. For a basis B = (e1, . . . ,eD−1) of the simplex S D , we define the contrast matrix VB as
the matrix associated to the linear mapping clr from basis B to the canonical basis of RD , i.e. the matrix
whose columns are the clr(ei ) ,1 ≤ i ≤ D −1.

Proposition 1.3. Let V be the contrast matrix of an orthonormal basis B.

• V has dimensions D × (D −1) and its rank is D −1.
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• We have: V⊤ V = ID−1 and VV⊤ = ID − 1
D 1D 1D

⊤, where 1D = (1, . . . ,1)⊤ ∈RD .

• For all x in S D , we have: clr(x) = V ilr(x) and ilr (x) = V⊤ clr(x).

Note that there also exists another transformation called alr:

Definition 1.5.

alr :
S D → RD−1

x 7→
(
ln

(
x1
xD

)
, . . . , ln

(
xD−1

xD

))⊤
We define the (D −1)×D-matrix F and the D × (D −1)-matrix K by:

F = (
ID−1 −1D−1

)
and K =

(
ID−1− 1

D 1D−11D−1
⊤

− 1
D 1D−1

⊤

)

Proposition 1.4.

• We have: FK = ID−1 and KF = GD = ID − 1
D 1D 1D

⊤.

• For all x in S D , we have: alr(x) = F clr(x) and clr(x) = K alr(x).

The alr transformation is a linear mapping, but is not an isometry, and is not symmetric in the coordinates.
For these reasons, we will not be able to use it in this report. However, it important to note that it is the
easiest one to compute.

1.2.2 Matrix-vector product on the simplex

The Invariant Coordinate Selection method is based on a linear transformation of the data set, so for our
purposes we need to study the basic of linear algebra on the simplex.
As usual, in order to get a matrix description of linear mappings on a vector space we first need to define a
matrix-vector product.
But in the case of the simplex, this leads naturally to defining two matrix-vector products, since when
adapting the classical product to simplex operations, we lose the commutative property of the multiplica-
tion. In this report, we will only use the right-side product, which is defined for a D ×D-matrix A and a
vector x ∈S D by:

A⊡x =C

(
j=D∏
j=1

x
a1, j

j , . . . ,
j=D∏
j=1

x
aD, j

j

)⊤
The relevance of this new product is given by the following proposition, which is Proposition 11.3.9 in
(Egozcue et al. 2011).

Proposition 1.5. For every A ∈RD×D and x ∈S D :

clr(A⊡x) = Aclr(x)
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This compatibility with the clr isometry explains why the compositional matrix-vector product ⊡ will be
useful to describe the algebra L

(
S D

)
of linear mappings of the simplex S D , provided that it is linear

(which, as explained in (Egozcue et al. 2011) is not the case for every matrix A ∈RD×D ). We will come back
to this in Section 2.1.

1.2.3 Statistics on the simplex

Through an ilr isometry, we can transport the Borel σ-field of RD−1 and the Lebesgue measure to S D ,
and thus construct random variables on the simplex (their distribution functions are defined as the
push-forward measure of the distribution of X∗ on RD−1). Then we have to show that the constructed
probability space and the random variables do not depend on the choice of isometry.

1.2.3.1 Centre & geometrical mean

Definition 1.6. The centre of a random variable X on S D is defined as:

g [X] =
−1
clr(E [clr(X)]) =

−1
ilr
B

(
E

[
ilr
B

(X)

])
for any orthonormal basis B of S D , provided that it verifies E [∥clr(X)∥] <∞.

A consistent estimator of g [X] is given by the geometric mean :

ĝ = 1
n ⊙ (X1 ⊕·· ·⊕Xn)

1.2.3.2 Notions of variance on the simplex

In this subsection, we make a summary of the common notions of variance that can be defined on the
simplex.
The first object (defined in particular in the R package compositions by van den Boogaart, Tolosana-
Delgado, and Bren (2021)) will be the most useful when applying the ICS method to compositional
data:

• The (co-)variance clr-matrix:

V [X] =V [clr(X)] = V
B
V

[
ilr
B

(X)

] ⊤
V
B

for any orthonormal basis B

The following three objects are defined by Pawlowsky-Glahn, Egozcue, and Tolosana-Delgado (2015). We
considered using them when adapting ICS to compositional data, but due to their lack of interpretation as
linear mappings we preferred the (co-)variance clr-matrix.

• Aitchison’s variation matrix:

T =
(
V

[
ln(4)

Xi

X j

])
1≤i , j≤D−1
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• The variability according to a direction z ∈S D :

var[X,z] = E[∥X⊖z∥a
2]

• The total variance:
totvar[X] = min

z∈S D
var[X,z] = E

[∥∥X⊖g (X)
∥∥

a
2
]
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2 Algebra and statistics embedded in the simplex

In the previous section, we reminded helpful algebra and statistics tools to study compositional data
which often made use of the isometric logratio transformations.
In this section, we will develop a more intrinsic point of view on compositional linear algebra and statistics,
in order to prepare for Chapter 3, where we will suggest an adapted ICS method for compositional data.
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*
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*
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Figure 2.1: Pairwise ternary diagrams of the BDDSegX data set (compositions).

From now on, we transform the volumes from the data set BDDSegX in compositions denoted by
SA,SB,SC,SD and SE by using the closure operator. Note that in the case of D = 3, it is possible to plot
compositional data by using a ternary representation. When D > 3, as in the example BDDSegX where
D = 5, we can plot a matrix of ternary diagrams by considering in turn two coordinates and aggregating
the other coordinates of the composition (see Figure 2.1).
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2.1 Linear algebra in the simplex

Since S D is canonically isometric to the clr-space H , we can naturally identify linear mappings on the
simplex and on H , associating to a mapping u ∈L

(
S D

)
the mapping:

Ψ (u) :
H → H

y 7→ clr
(
u

(
clr−1 (

y
))) ∈L (H )

To get a matrix description of the algebra L (H ), it is more convenient to see it as embedded into L
(
RD

)
,

through the isomorphism: {
v ∈L

(
RD

) |v (H ) ⊆H , v(1D ) = 0
} → L (H )
v 7→ v |H

because then the conditions to belong to L (H ) can be translated into matrix conditions (called ‘zero-
sum property’ in (Pawlowsky-Glahn, Egozcue, and Tolosana-Delgado 2015)).
These intuitions can be summed up into the following theorem:

Theorem 2.1.

• The algebra L
(
S D

)
of linear mappings on S D is isomorphic to the algebra:

M = {
A ∈RD×D |1D

⊤ A = 0 and A1D = 0
}

of D ×D-matrices verifying the zero-sum property (row-wise and column-wise), called ‘clr-matrices’,
on which the identity element with respect to the multiplication is the matrix:

G
D
= I

D
− 1

D
1D 1D

⊤

and the multiplicative inverse of a rank D −1 matrix A ∈M is:

A−1 = (
A+1D 1D

⊤)−1 −1D 1D
⊤ =

−1
ilr
B

(
ilr
B

(A)−1
)
∈M

for any basis B.

• The following mapping is an isomorphism:

Φ :
M → L

(
S D

)
A 7→ (x 7→ A⊡x)

and its inverse is:

Φ−1 :
L

(
S D

) → M

u 7→ (clr(u (ε1)) , . . . ,clr (u (εD )))

where (ε1, . . . ,εD ) is the generating set of S D obtained when applying clr−1 to the canonical basis of
RD .
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Proof.

• We prove thatΦ is an isomorphism by writingΦ=Φ2 ◦Φ1 thanks to the compatibility of the matrix-
vector product on the simplex from Proposition 1.5, whereΦ2 =Ψ−1 (as defined in

1) is clearly an algebra isomorphism and:

Φ1 :
M → L (H )

A 7→ (x 7→ A x)

is well defined because if A ∈M and u =Φ1 (A) ∈L
(
RD

)
, we have A1D = 0D so u (1D ) = 0D and

1D
⊤ A = 0D so for every x ∈RD , ([) a]1D ,u (x) = 0 i.e. u (x) ∈ 1D

⊥ =H soΦ1 (A) ∈L (H ). Then
Φ1 is the restriction/corestriction of an injective algebra homomorphism and the subspaces
M and L (H ) have the same dimension (D −1)2.

• To prove the expression ofΦ−1, it is sufficient to write it asΦ−1
1 ◦Φ−1

2 .

• We haveΦ−1
(
IdS D

)= GD .

• If A ∈ M is a rank D −1 clr-matrix, we consider the linear mapping v ∈ L
(
RD

)
associated with

A+1D 1D
⊤ which stabilizes H and R1D , is invertible and verifies v|H =Φ1 (A) and v|R1D = Id1, from

where we deduce the formula.

Remark.

• The isomorphisms from the theorem are canonical, in the sense that they do not rely on a choice of
orthonormal basis of S D .

• This theorem can be seen as a particular case of theorem 11.3.10 in (Egozcue et al. 2011) in which the
linear mappings are endomorphisms. But it is more precise because it gives algebras isomorphisms
and a formula to compute the inverse of a rank D −1 clr-matrix.

• One could as easily prove a formula such as, for every A ∈M :

det
(∗
A
)
= det(Φ (A)) = det

(
A+1D 1D

⊤)

2.2 Whitening data in the simplex

Thanks to the formula of the inverse of a rank D −1 clr-matrix A ∈M :

−1
A = (

A+1D 1D
⊤)−1 −1D 1D

⊤
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it is possible to compute the inverse square root of the (co-)variance clr-matrix V [X]−
1
2 , in order to whiten

a compositional random variable admitting the first two moments without computing any isometric
logratio transformation:

Z =V [X]−
1
2 ⊡

(
X⊖g [X]

)= −1
clr

(
V [clr(X)]−

1
2 (clr(X)−E [clr(X)])

)
with V [Z] = GD and g [Z] = 1

D 1D .

S_A S_B

*

Z_1 Z_2

Z_3

Figure 2.2: Original (left) and whitened (right) subcompositions of BDDSegX data set (compositions).

Example 2.1. Figure 2.2 illustrates the impact of whitening data in the simplex on the BDDSegX data set.
We consider SA and SB and aggregate the other coordinates in order to get compositions in 3 dimensions.
The mean (geometric mean) of the data points is plotted as a small circle while the scatter is represented
by an ‘ellipse’ transformed back to the simplex.

2.3 Elliptical distributions on the simplex

In this subsection, we will define elliptical distributions on the simplex, generalizing the definition of
the Gaussian distribution on the simplex in Theorem 6.4 by Pawlowsky-Glahn, Egozcue, and Tolosana-
Delgado (2015).

Example 2.2. On ?@fig-gaussian, we generated n = 100 observations following a Gaussian distribution in
S 3 and plot the associated ternary diagram with an ‘ellipse’ contour on the left plot. The same data are
plotted on the right part of the figure after whitening.
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Figure 2.3: Gaussian data in S 3, before (left plot) and after whitening (right plot).
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Figure 2.4: Gaussian data in S 3, before (left plot) and after whitening (right plot).
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Proposition 2.1. Consider two orthonormal bases B1 and B2 of the simplex S D with associated contrast
matrices V1 and V2 respectively and a random composition X. For i in {1,2}, let Xi

∗ = ilri (X) represent its
orthonormal coordinates according to Bi . If X1

∗ follows a
(
µ1,Σ1

)
-elliptical distribution, then X2

∗ follows
a

(
µ2,Σ2

)
-elliptical distribution, where µ2 = V2

⊤ V1µ1 and Σ2 = V1
⊤ V2Σ1V2

⊤ V1.

Proof. As we know that ilr2 (x) = V2
⊤ V1 ilr1 (x), it is enough to prove that V2

⊤ V1 is a (D −1)× (D −1)-
orthogonal matrix, because then we only need to perform an orthonormal change of basis in the expres-
sion of the distribution of X to obtain the result.
Let us verify that it is indeed true:(

V
2

⊤ V
1

)⊤
V
2

⊤ V
1
= V

1

⊤ V
2

V
2

⊤ V
1
= V

1

⊤
(

I
D
− 1

D 1D 1D
⊤
)

V
1

= V
1

⊤ V
1
− 1

D V
1

⊤1D 1D
⊤ V

1
= I

D−1

since V1
⊤1D is the vector of the sums of columns of V1 and is equal to 0D−1.

Remark. In this proof, we use the fact that the matrix V2
⊤ V1 is a (D −1)× (D −1)-orthogonal matrix,

which is natural since a change of contrast matrix corresponds to a different choice of orthonormal basis
of S D (which is isometric to RD−1), but also very helpful to prove this kind of ilr-independence results.

This allows us to define the elliptical distributions as push-forward measures:

Definition 2.1. If µ ∈S D and Σ ∈M , a random composition X on S D is said to follow a
(
µ,Σ

)
-elliptical

distribution if the random vector ilr(X) (where ilr is any isometric logratio transformation) follows a(
µ∗,Σ∗)

-elliptical distribution on RD−1.

In particular the Gaussian distribution on the simplex NS

(
µ,Σ

)
is defined as the push-forward measure

by any ilr−1 of the Gaussian distribution N
(
µ∗,Σ∗)

.
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3 Outlier detection using ICS for compositional data

3.1 ICS on the ilr-space

Given what has been said earlier about outlier detection and compositional data, one way to treat the
subject would be to send isometrically the compositional data set to the ilr-space and apply ICS under the
elliptical mixture model to ilr(X).
Applying results like Theorem 3 from the article by Tyler et al. (2009), we would know that under some
assumptions the outliers would be highlighted by an orthogonal projection on the first or the last ilr-
coordinates.
However, many questions arise from this approach:

• What is the dependence of this model on the choice of isometry ilr?

• Why use an ilr transformation and not the clr transformation?

• How to interpret (if it is unique) the ICS transformation back in the simplex?

• Are elliptical distributions on the simplex and the results of the ICS method meaningful and can
they model real data?

The last question can already be partially answered, since elliptical distributions are a generalization of
the normal distribution on the simplex, for which the central limit theorem (Theorem 6.24 in (Pawlowsky-
Glahn, Egozcue, and Tolosana-Delgado 2015)) still applies.
This suggests that the family of distributions with elliptical symmetry is still a worthy candidate to model
real compositional data.
First, let us apply the elliptical mixture model after the isometric logratio transformation, and define an
intrinsic model on the simplex.

3.2 ICS on the simplex: what is possible – what is not

3.2.1 Elliptical mixture models on the simplex

Firstly, if the distribution function FX of X verifies:

FX∗ = (1−ε)F∗
0 +

k=q∑
k=1

εk F∗
k
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in the ilr-space then, by definition of distribution functions on S D (as push-forward measures using the
measurable function ilr−1):

FX = (1−ε)F0 +
k=q∑
k=1

εk Fk

where, for 0 ≤ k ≤ q we define Fk = F∗
k ◦ ilr (which does not rely on ilr).

Now, let us apply the Invariant Coordinate Selection method on the ilr coordinates and try to get rid of the
dependence on the isometric logratio transformation.

3.2.2 ICS from the ilr-space back to the simplex
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*
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*
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Figure 3.1: Data generating according to a Gaussian mixture model in S 5 (top), and its Invariant Coordinates
(bottom).

As we saw earlier when we whitened compositional data, the ilr-linear transformation corresponds, back
in the simplex, to:

Z = ⊤
H⊡

(
X⊖g [X]

)
and H∗ = S

∗− 1
2

1 Q∗ is associated with H = S1
− 1

2 Q (where the inverse square root exists because the linear
mapping associated with the clr-matrix S1 is positive-definite). So applying H⊤ means first applying S1

(i.e. changing the Aitchison inner product) and then applying the orthogonal matrix Q: the interpretation
of the ICS transformation remains the same on the simplex.
What we need to keep in mind is that the ICS method is based on the interpretation of the eigenvalues of
S1

−1 S2 as a measure of kurtosis according to each axis, and that a high kurtosis according to a direction
suggests the existence of outliers in that particular direction: one way or another, we must choose H∗ so
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Figure 3.2: Data generating according to a Gaussian mixture model in S 5 (top), and its Invariant Coordinates
(bottom).

Table 3.1: Covariance between log(X) and log(Z).

[1] “

"

IC.1 IC.2 IC.3 IC.4 IC.5
X1 0.17 0.00 0.01 −0.27 0.15
X2 0.36 −0.06 −0.06 −0.13 −0.01
X3 0.05 −0.64 −0.03 0.40 0.26
X4 0.18 0.34 0.18 −0.13 −0.30
X5 −0.51 0.55 0.20 0.10 −0.13

[1]"

”
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Figure 3.3: Outliers in selected Invariant Coordinates of the data set generated according to a Gaussian mixture
model.

that this interpretation is not lost when isometrically coming back to the simplex.
Here, one could imagine an alternative way to find an orthogonal matrix Q by diagonalizing
A = S1

− 1
2 S2 S1

− 1
2 directly in the clr-space. Naturally, the eigenvalues (omitting the 0 associated to the

zero-sum property) would be preserved, but the eigenvectors would form a basis of RD instead of the
clr-space H . However, when diagonalizing in an ilr-space then computing Q = VQ∗ V⊤, the matrix Q
does not diagonalize A (it is not even orthogonal as a D ×D-matrix).

Example 3.1. Before analyzing in detail the dependence of the method on the choice of ilr transformation
(which will be the object of the next section), we present an application of this compositional ICS method
to a data set of size n = 150 generated according to a compositional Gaussian mixture model.
We first compute the matrix H and the Invariant Coordinates as we described at the top of this paragraph
(see ?@fig-mixturecomp_ICS_scores).
Then, we select IC.1 and regroup the other components, and we see that the outliers are best identified
using this particular amalgamation.
Finally we plot the Aitchison norms of the selected components on Figure 3.3.

3.2.3 The effects of changing the contrast matrix

Let us suppose that we have two transformations ilr1 and ilr2, whose respective contrast matrices are V1

and V2.
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Then for each i ∈ {1,2}, we define an orthogonal matrix Q∗i

i diagonalizing A∗i and note its associated
clr-matrix Qi ∈M .
The aim of the subsection is to connect Q1 to Q2. Let us write the equalities we know this far:

A = V
1

∗1

A V
1

⊤ A = V
2

∗2

A V
2

⊤ (3.1)

Q
1
= V

1

∗1

Q
1

V
1

⊤ Q
1
= V

2

∗2

Q
1

V
2

⊤ (3.2)

Q
2
= V

1

∗1

Q
2

V
1

⊤ Q
2
= V

2

∗2

Q
2

V
2

⊤ (3.3)

∗1

Q
1

⊤∗1

A
∗1

Q
1
=∆∗ ∗2

Q
2

⊤∗2

A
∗2

Q
2
=∆∗ (3.4)
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Figure 3.4: Invariant Coordinates of the data set generating according to a Gaussian mixture model in S 5, with two
different contrast matrices.

The equations of line Equation 3.4 use the fact that the positive semi-definite matrices A, A
∗1
1 , A

∗2
2 have

the same non-zero eigenvalues, which justifies the notation ∆∗ (without reference to ilr1 or ilr2) for the
diagonal matrix contain them in decreasing order.
By equalizing the two different expressions of A on line (Equation 3.1), we get:

∗2

A = V
1,2

∗1

A
⊤
V

1,2

where V1,2 = V2
⊤ V1 is a (D −1)× (D −1)-orthogonal matrix, as stated by the remark after Proposition 2.1

on elliptical distributions on the simplex. We do the same with lines Equation 3.2 and Equation 3.3 and
we obtain two similar equalities connecting Q∗2

i to Q∗1
i for i ∈ {1,2}.

Let us suppose that Q1 = Q2. Then:
∗2

Q
2
= V

1,2

∗1

Q
1

⊤
V

1,2
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so when replacing Q∗2
2 by its new expression in the right side equation of line (Equation 3.4):

V
1,2

∗1

Q
1

⊤∗1

A
∗1

Q
1

⊤
V

1,2

i.e. using this time the left side equation of line (Equation 3.4):

V
1,2
∆∗ ⊤

V
1,2

=∆∗

Since this last equality is generally not true, we can deduce that in general:

Q
1
̸= Q

2

The intuition is that diagonalizing the matrix A∗i sums up to choosing an orthonormal basis of the simplex,
just as picking a contrast matrix. So when deducing Qi from Q∗i

i we should not use different contrast
matrices, but the same one which we will denote V0.
Now let us redefine Q1 and Q2 with this adjustment:

Q
1
= V

1

∗1

Q
1

V
0

⊤ Q
2
= V

2

∗2

Q
2

V
0

⊤

so that: ∗2

Q
2
= V

1,2

∗1

Q
1

Since the eigenvectors are never unique, we still have in general:

Q
1
̸= Q

2

But let us assume that they are unique (which is realistic since under our continuous models the
probability that two eigenvalues are equal is zero, so each eigenvector is unique up to its sign, which
is still problematic but we could design a process that sets the signs). Then, by going up the previous
reasoning we could deduce that Q1 = Q2.

Example 3.2. Figure 3.4 contains scatter plots of the Invariant Coordinates of the compositional mixture
data set, with two different contrast matrices. We notice that because the signs were not set, only the
plot of the amalgamation (IC.1,IC.2,∗) is identical between both subfigures. Because of the contrast
matrices, one small change (for instance a vector turned into its inverse) on the Q∗ matrix can induce
more important changes on Q.

Globally, we conclude that this adaptation of the ICS method (using ilr) is dependent on the choice of ilr
for the same reason that in ICS, the expression ‘Invariant Coordinates’ and their definition are slightly
improper: because of the non-uniqueness of the eigenvectors.
A way to avoid this problem would be to choose a privileged contrast matrix, for instance picking an
orthonormal basis that diagonalizes A in the clr-space H .
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Table 3.2: Covariance between log(X) and log(Z).

[1] “

"

IC.1 IC.2 IC.3 IC.4 IC.5
SA 0.14 0.11 −0.12 −0.17 −0.08
SB 0.02 0.01 −0.05 0.02 −0.02
SC 0.01 −0.03 0.04 0.04 −0.04
SD −0.11 −0.03 0.09 −0.06 0.17
SE −0.32 0.05 0.17 −0.03 0.30

[1]"

”

3.3 Application to automotive market data & interpretations

To conclude this chapter, let us apply our suggestion of adapted ICS method for compositional data to the
BDDSegX data set on the automotive market.
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Figure 3.5: Invariant Coordinates of the BDDSegX data set (compositions).

First, the Invariant Coordinates are computed, and the covariances between log-coordinates of the
original and transformed data set can be found on Table 3.2. It is more difficult to interpret the Invariant
Coordinates since we did not define a good notion of correlation on the simplex, and that the covariances
are less meaningful because the total variances of the coordinates differ from one another.
The Invariant Coordinates are plotted on Figure 3.5, and what is interesting is that, even without selection,
we can see outliers appear, as well as groups (we remind that shades of blue are in chronological order,
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Figure 3.6: Distances of the selected Invariant Coordinates of the BDDSegX data set (compositions).

from darkest to lightest).
But if we try to select some coordinates, the outliers appear neither on the first nor on the last Invariant
Coordinates, but rather on the fourth coordinate.
Figure 3.6 is a scatter plot of the ICS distances, i.e. the Aitchison norms of the amalgamation isolating
IC.4 from the other components. We clearly see that between 2008 and 2010 (which are the year of the
financial crisis in Europe) is were we get the majority of outliers.
There is a noteworthy difference with the Figure 1.8 (which plots the ICS distances, but for the data set in
volumes): after 2014, new outliers appear. This suggests a reinterpretation of the outliers as majors booms
of European automotive market, which happened around 2008 and around 2015.

34



Conclusion

Adapting the Invariant Coordinate Selection method to compositional data can, as it is often the case
when adapting general multivariate data analysis methods, be done through applying the classical ICS
method after an ilr transformation.
Obviously, this does not provide a complete answer to the problem, since when transforming back through
ilr−1 we lose most of the properties of ICS, namely that the directions of the outliers are the first coordi-
nates.
Moreover, the ICS transformation matrix H depends on the choice of contrast matrix, even with an adjust-
ment such as discussed at the end of Section 3.2.3.
A first way to avoid this dependence would be to choose a contrast matrix, for instance one that simulta-
neously diagonalizes the scatter pair, or one that transforms the orthogonal projection on the ilr-space
into a subcomposition on the simplex, using balances (as in Section 4.8 of the book by Pawlowsky-Glahn,
Egozcue, and Tolosana-Delgado (2015)).
In order to find a more intrinsic method, one could look for a link between the eigenvalues of the scatter-
difference matrix Ŝ

−1
1 Ŝ2 and a notion of kurtosis according to the axes of the simplex (which are not

orthogonal), instead of the approach that has been developed here which relies on the kurtosis according
to the ilr coordinates.
Another approach would be to create a good notion of correlation between simplex coordinates (see
the article by Quinn et al. (2017) which explains why correlation is not appropriate for relative data and
suggests more pertinent methods).
Naturally, results like Theorem 3 in the article by Tyler et al. (2009) (proving that under a Gaussian mixture
model, the direction of the outliers can be found on the first or last Invariant Coordinates) could be
adapted to the ilr coordinates, but one could hope (if a more intrinsic method is found) to find similar
results directly in simplex coordinates.
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4 R scripts and plots

The scripts that lay the foundations for the development of an ICSCoDa package, and also enables the
reproduction of the plots in this report can be found on the following GitHub:

https://github.com/camillemndn/ICSCoDa
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