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The classical version of the PLN model assumes that n independent count vectors (each of dimension
p) are observed. The aim of this course is to extend the PLN model to take into account a dependency
between count vectors. Depending on the application, it may be assumed that the dependency structure
between observations is free or takes a specific form. The associated inference algorithm will then need to
be developed. This algorithm could eventually be integrated into the R/C++ PLNmodels package. This
subject is motivated in particular by an application to population genetics, where the p counts making up
a vector are derived from p possibly related individuals, and where each vector of counts is associated
with a locus along the genome. The aim here is to take into account the dependency between neighboring
loci (known as linkage disequilibrium).
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Introduction

This report summarises the advancements that have been made during my research internship at UMR
Mathématique et Informatique Appliquées (Paris-Saclay), between April 2023 and July 2023, under the
supervision of Julien Chiquet, Mahendra Mariadassou, Stéphane Robin and Bertrand Servin.

The goal was to design a multivariate count model adapted to a dataset on crossing-overs, which are
breaks all along the DNA strand at the time of meiosis, and for multiples species of sheep. The MIA
team has developed the Poisson log-normal model, which is accurate for counting multiple variables and
measure their correlations.

But in this specific dataset, there is a clear spatial dependency that lacks in the classical PLN model
where the sites are independent. So we wanted to design a PLN model where the latent variables have an
auto-regressive structure, and implement in R into the PLNmodels package.
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Notations

Throughout this report, it will be made use of the following notations:

• Let KL(P∥Q) = ∫
log dP

dQ dP .
• Let Z = (Z1, . . . , Zn) and Y = (Y1, . . . ,Yn) be i.i.d. samples.

• Let p(X ;θ) denote the Radon-Nikodym derivative
dP X

θ

dµ .
• Let ℓ(θ; X ) = log p(X ;θ) the log-likelihood.
• Eθ[ f (Y , Z )] = E(Y ,Z )∼Pθ

[ f (Y , Z )]
• Eψ[ f (Y , Z )|Y ] = EZ |Y ∼Qψ

[ f (Y , Z )|Y ]
• Eψ[ f (Z )] = EZ∼Qψ

[ f (Z )]
• In order to write more compact expressions, we will use as often as possible the convention that

non-linear functions (mainly log, exp, ! and 2) applied to vector are actually applied coefficient-wise.
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1 Reminders

This section is dedicated to a comprehensive overview of the prerequisites to the inference of a Poisson log-
normal model with auto-regressive Gaussian latent vectors. The theoretical context is that of generalized
linear models (GLM) with latent variables, and graphical models.

1.1 Generalised linear models & latent variables

1.1.1 Exponential families

The exponential families form very a classical, but broad, class of statistical models. They are at the core
of Generalised Linear Models, and their inference is usually carried out through Maximum Likelihood
Estimation (MLE). The concept of exponential families is credited to E. J. G. Pitman, G. Darmois, and B. O.
Koopman in 1935–1936.

Definition 1.1 (Exponential families (Murphy 2023), Section 2.4). Let µ be a σ-finite measure on a
measurable space Y ⊆ Rp . Consider a family Pθ,θ ∈ Rd of probability measures on Y . This family
Pθ,θ ∈Rd is an exponential family if its densities with respect to µ can be written in the following way:

pθ(y) = 1

Z (θ)
h(y)exp

[〈θ,T (y)〉]= h(y)exp
[〈θ,T (y)〉− A(θ)

]
where:

• the function Z : Rd → R∗+ (resp. A : θ ∈ Rd 7→ log Z (θ)) is called the partition function (resp. log-
partition function);

• the function T : Y →Rd is the sufficient statistic;
• the function h : Y →R is the base measure, often we will have h = 1.

Example 1.1. Many statistical models using usual distributions are exponential families. Among them:

• Bernoulli family
• Binomial B(n, p) family with known n
• Multivariate Gaussian family
• Exponential family
• Poisson family
• Geometric family

but there are also non-examples:
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• Uniform distributions with unknown bounds
• Cauchy family (hence logistic)
• Hyper-geometric family
• Student family
• Most family of mixtures.

The intuition is that we must be able to separate the parameter and the variable by factorisation.

Proposition 1.1 (Log-partition function and cumulants). Let Y : Ω→ Rp be a random variable in an
exponential family. Then:

∇A(θ) = Eθ[T (Y )]

∇2 A(θ) = Covθ[T (Y )]

1.1.2 Generalised linear models

The exponential families can be used to generalise the classical linear regression model with normally
distributed error, conditionally on the covariates.

Let X :Ω→ X ⊆ Rd and Y :Ω→ Y ⊆ Rp be random variables. A generalised linear model consists of
three elements:

• An unknown parameter matrix B = (β1| . . . |βp ) ∈Rd×p ;
• A dispersion parameter σ;
• An over-dispersed natural exponential family modelling the distribution of Y conditionally on X ,

whose parameter is the linear predictor θ = B⊤X and sufficient statistic is the identity.

The notion of generalised linear model was first investigated by Wedderburn and Nelder (1972). For more
details on the matter, see Dobson and Barnett (2018).

Definition 1.2 (GLM (Murphy 2023), Chapter 15). A generalized linear model or GLM is the combination
of two variables X : Ω→ X ⊆ Rd and Y : Ω→ Y ⊆ Rp with the following conditional density for Y |X
parametered by B ∈Rd×p ,σ> 0:

pB,σ(y | x) = h(y,σ2)exp

[ 〈B⊤x, y〉− A(B⊤x)

σ2

]

By Proposition 1.1, we have the following link between the log-partition function and the conditional
expectation E[Y |X ]:

E[Y |X ] =∇A(B⊤X )

The link function g such that g (E[Y |X ]) = B⊤X verifies:

g−1 =∇A
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Example 1.2 (Poisson regression). If we have Y ∈N we can use:

pβ(y |x) = e−µ
µy

y !
where µ= e〈x,β〉

Then A(〈x,β〉) =µ= e〈x,β〉 and h(y) =− log(y !).

1.1.3 Latent variables & Expectation-Maximisation (EM)

When the observed data is complete, the estimation of a GLM can be carried out through simple MLE
(Murphy 2023, Section 15.1.3): the calculation are explicit and the optimisation often relies on the
Iteratively Reweighted Least Squares algorithm or Stochastic Gradient Descent.

However, for the Poisson log-normal model we need incomplete data models, i.e. hidden variables. They
have studied extensively in Robin (2018). In addition to the the observed response variable Y , we assume
that there a hidden variable Z .

Then, the calculation of the MLE is not explicit anymore, but in some cases the classical Expectation-
Maximisation algorithm (Dempster, Laird, and Rubin 1977) solves this issue.

The EM algorithm is an iterative procedure that can be described as follows:

• (Initialisation) Choose θ̂(0) ∈Θ.

• (E-step) For each θ ∈ Θ, compute the conditional expectation of the complete log-likelihood
conditionally on the observed data Y with the current estimate θ̂(h) of the parameters:

Q(θ, θ̂(h)) := E θ̂(h) [ℓ(θ;Y , Z )|Y ]

• (M-step) Find, if it exists, a new estimator θ̂(h+1) ∈Θ of θ that maximises said expectation:

θ̂(h+1) ∈ argmax
θ∈Θ

Q(θ, θ̂(h))

This way we construct a family (θ̂(h))h of estimators of θ.

1.2 Poisson log-normal model

In this section, we define the Poisson log-normal distribution and model. We will see that the Expectation-
Maximisation algorithm is unavailable, since we are unable to produce a closed form of the moments of
pθ(Z |Y ). This comes from the fact that PLN is not a GLM, but rather a GLMM (Generalised linear mixed
model).
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1.2.1 Definition

Definition 1.3 (PLN distribution (Aitchison and Ho 1989), Section 2). For µ ∈ Rp and a p ×p-positive-
definite matrix Σ, the Poisson log-normal distribution, denoted PLN(µ,Σ) is a discrete distribution on
Np whose pmf is:

p(y) =
∫
Rp

j=p∏
j=1

f
(
y j ;exp z j

)
g

(
z;µ,Σ

)
d z

where f (·;λ) is the pmf of the Poisson P (λ) and g
(·;µ,Σ

)
is the pdf of the Gaussian Np

(
µ,Σ

)
distribution.

Remark.

• It is the distribution of Y when Z ∼Np (0,Σ):

Y j |Z ⊥∼P
(
exp(µ j +Z j )

)
,1 ≤ j ≤ p

• As a multivariate regression model, with µ= B⊤X , it is not a GLM but Generalised Linear Mixed
Model because of the latent variable Z .

1.2.1.1 Comparing Poisson and PLN pmfs
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Figure 1.1: Comparing PLN and Poisson pmfs with Y1 ∼ PLN(µ= log(20),σ= 1),Y2 ∼P (λ= mode(PLN(µ,σ))).

Remark. There is clearly an over-dispersion phenomenon, compared to the Poisson distribution.
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1.2.1.2 Example of multivariate PLN data
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Figure 1.2: Multivariate PLN

(
µ=

(
log(20)
log(20)

)
,Σ=

(
1 1
1 2

))
.

1.2.1.3 Remarks

Remark. When modelling real data, the regression layer is corrected by the sampling effort (offset): ratio
of sample over whole population.

Why is the Poisson log-normal useful for abundance tables (e.g Joint Species Distribution Models)?

• Poisson: we count occurrences (sites), which happen rarely and independently (for instance
number of animals appearing at a particular site):

The name ‘law of rare event’ may be misleading because the total count of success events in a Poisson
process need not be small if the parameter np is not small. For example, the number of telephone calls
to a busy switchboard in one hour follows a Poisson distribution with the events appearing frequent
to the operator, but they are rare from the point of view of one average member of the population who
is very unlikely to make a call to that switchboard in that hour.

• Multivariate: At each site, we want to count multiple species simultaneously (abundance vector)
while accounting for their correlation: we need a multivariate distribution whose marginal are
Poisson distribution and whose covariance matrix is arbitrary, which is not easy to design (without
forcing non-negative covariances).
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• Log-normal: log is the link function, normal because we want to make some calculations.

1.2.2 Properties

There are simple expression for the first two cumulants of the PLN distribution:

• Expectations:
EYi j = EE[Yi j |Zi j ] = eµi j+σ j j /2

• Variances:
VarYi j = EVar(Yi j |Zi j )+Var(E[Yi j |Zi j ]) = EYi j +E[Yi j ]2 (

eσi j /2 −1
)

Or they be written using a matrix notation:

E[Y ] = exp

(
µ+ 1

2
diagΣ

)
where diagΣ ∈Rp denotes the vector of diagonal entries of Σ and exp is taken entry-wise.

Var(Y ) =∆Y +∆Y
(
expΣ− J

)
∆Y

where ∆Y = diagE[Y ] is the p ×p-diagonal matrix whose entries are the vector E[Y ].

We notice that, if Z is i.i.d, Y is decorrelated.

Also, we prove the over-dispersion phenomenon noticed earlier: VarYi j > EYi j .

1.3 Generalised linear mixture models

1.3.1 Definition

A generalised linear mixture model is a type of hierarchical model. It generalises the GLM approach by
adding a random effect Z to the fixed effect B⊤X .

Definition 1.4 (GLMM). A Generalised linear mixed model is the combination of three variables X , Y and
Z ∼Np (0,Σ) such that X and Z are independent and, conditionally on X and Z , Y has its distribution in
an exponential family of the form:

pβ(y | x, z) = h(y)exp

[ 〈B⊤x + z, y〉− A(B⊤x + z)

σ2

]
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1.3.2 Variational Expectation-Maximisation (VEM)

The EM algorithm is actually a special case of the Minimisation-Maximisation or MM algorithm, which
is a general iterative procedure where the E-step is replaced by a minimisation step over the set of all
possible distributions for Z |Y .

If we restrict this set to some smaller parametric set Q = {
Qψ,ψ ∈Ψ⊆RN

}
of variational distributions

to approximate the conditional distribution of Z |Y , we get the variational EM or VEM algorithm. This
induces lower-bounding the log-likelihood by the evidence lower-bound (ELBO):

J (θ, q ;Y ) = Eq [log pθ(Y , Z )− log q(Z )]

The VEM algorithm is described as follows:

• (Initialisation) Choose (θ̂(0),ψ(0)).

• (VE-step) Compute the ELBO with current estimates (θ̂(h),ψ(h)) of the parameters:

ψ(h+1) ∈ argmin
ψ∈Ψ

J (θ̂(h), qψ,Y )

• (M-step) Find the new estimated parameters θ̂(h+1) that maximise said ELBO.

θ̂(h+1) ∈ argmax
θ∈Θ

J (θ, qψ(h) ,Y )

If we choose the parametric set of Gaussian distributions as set of variational distributions:

Q = {
Qψ =Qψ1 . . .Qψn

∣∣Qψi =Np (mi ,Si ),ψi = (mi ,Si ) ∈Rp ×Rp×p ,1 ≤ i ≤ n
}

then the parameter m (resp. S) can be seen as an estimator of the conditional expectation E[Z |Y ] (resp.
conditional variance Var[Z |Y ]).

1.3.2.1 Example

Let us show, using the PLNmodels package, an implementation of the VEM algorithm to data generated
with the rPLN function:

#>
#> Initialization...
#> Adjusting a full covariance PLN model with nlopt optimizer
#> Post-treatments...
#> DONE!
#> A multivariate Poisson Lognormal fit with full covariance model.
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#> ==================================================================
#> nb_param loglik BIC ICL
#> 27 -270347.4 -270471.8 -262044.8
#> ==================================================================
#> * Useful fields
#> $model_par, $latent, $latent_pos, $var_par, $optim_par
#> $loglik, $BIC, $ICL, $loglik_vec, $nb_param, $criteria
#> * Useful S3 methods
#> print(), coef(), sigma(), vcov(), fitted()
#> predict(), predict_cond(), standard_error()
#> $B
#> Y1 Y2 Y3 Y4 Y5 Y6
#> (Intercept) 3.00499 3.025345 3.002611 3.08441 2.984871 2.9841
#>
#> $Sigma
#> Y1 Y2 Y3 Y4 Y5
#> Y1 1.035912834 1.003874981 -0.0198748300 0.014942778 0.0055759893
#> Y2 1.003874981 1.987567251 -0.0505681767 0.039993709 0.0064235659
#> Y3 -0.019874830 -0.050568177 1.2876012592 -0.003206137 -0.0008336345
#> Y4 0.014942778 0.039993709 -0.0032061369 3.030113571 -0.0020246097
#> Y5 0.005575989 0.006423566 -0.0008336345 -0.002024610 1.0350827029
#> Y6 -0.004381428 0.008718679 -0.0061865016 0.005713716 -0.0002457630
#> Y6
#> Y1 -0.004381428
#> Y2 0.008718679
#> Y3 -0.006186502
#> Y4 0.005713716
#> Y5 -0.000245763
#> Y6 0.401051489
#>
#> $Omega
#> Y1 Y2 Y3 Y4 Y5
#> Y1 1.891616953 -0.9558513792 -0.0081376559 0.0031984026 -0.0042487685
#> Y2 -0.955851379 0.9868191819 0.0238293823 -0.0082272795 -0.0009792384
#> Y3 -0.008137656 0.0238293823 0.7775045218 0.0005271768 0.0005258753
#> Y4 0.003198403 -0.0082272795 0.0005271768 0.3301229112 0.0006789047
#> Y5 -0.004248769 -0.0009792384 0.0005258753 0.0006789047 0.9661372278
#> Y6 0.041271715 -0.0314113424 0.0113794236 -0.0044808605 0.0005653564
#> Y6
#> Y1 0.0412717153
#> Y2 -0.0314113424
#> Y3 0.0113794236
#> Y4 -0.0044808605
#> Y5 0.0005653564
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#> Y6 2.4948189004
#>
#> $Theta
#> (Intercept)
#> Y1 3.004990
#> Y2 3.025345
#> Y3 3.002611
#> Y4 3.084410
#> Y5 2.984871
#> Y6 2.984100

1.3.3 Convergence of the VEM estimator

It was shown by the PLN team that, as a M-estimator, and under some classical assumptions:

• (A1) Assume that the parameter spaceΘ of θ is compact;
• (A2) Assume that the variational parameter spaceΨ of the variational parameters ψ is bounded;

then the VEM estimator is:

• consistent around an an unknown parameter θ̄ which might differ from the original parameter θ
• but simulations suggest it is nearly unbiased according to the original parameter θ.

Theorem 1.1 (Consistency of θ̂). Under assumptions (A1) − (A2), assume that the map θ →
E[supψ∈Ψ J (θ, qψ,Y )(θ;Y )] attains a finite global maximum at θ̄ (which can be different from the

true parameter θ⋆). Then θ̂→ θ̄ under Pθ⋆ .

Another general approach can be found in Gunawardana and Byrne (2005) where they define the notion
of Generalised Alternating Minimisation procedures.

1.4 Auto-regressive (AR) multivariate Gaussian processes

In this subsection, we define the stationary multivariate auto-regressive distribution. The notion dates
back to Udny Yule and Gilbert Walker, who designed the AR process of order q around 1930.

Definition 1.5 (AR(q)).

Zi =
q∑

k=1
ϕk Zi−k +εi

where the εi ,1 ≤ i ≤ n are i.i.d. Gaussian variables.

We use the multivariate generalisation in dimension p.
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Definition 1.6 (ARp (q)).

Zi =
q∑

k=1
Φk Zi−k +εi

where the εi ,1 ≤ i ≤ n are i.i.d. multivariate Gaussian variables in Rp .

We restrict to the particular case of order q = 1 where we can easily define a stationarity condition so that
every vector has the same first two moments.

Definition 1.7 (SAR(µ,Σ,Φ)). If the parameters Σ andΦ verify the stationarity condition:

Σε =Σ−ΦΣΦ⊤ ≻ 0

then the centered random vectors Z1, . . . , Zn :Ω→ Rp are said to follow the SAR(µ,Σ,Φ) distribution if
they follow an ARp (1) distribution:

Z1 ∼Np (µ,Σ) and Zi =ΦZi−1 +εi

where µε =µ−Φµ and the εi ∼Np (µε,Σε),1 ≤ i ≤ n are i.i.d.

Remark.

• We have Zi ∼Np (µ,Σ),1 ≤ i ≤ n.
• IfΦ= 0, Zi = εi ,1 ≤ i ≤ n are i.i.d.
• IfΦ= Ip , Z1 = ·· · = Zn are equal.

One can easily compute the full covariance matrix:
Σ ΣΦ⊤ · · · Σ (Φn)⊤

ΦΣ
. . .

. . .
...

...
. . .

. . . ΣΦ⊤

ΦnΣ · · · ΦΣ Σ


from which we deduce the existence unicity of the stationary auto-regressive distribution SAR(µ,Σ,Φ),
since all marginal distributions are Gaussian.

1.5 KL-divergence between two Gaussian multivariate distributions

Proposition 1.2. We denote the norm according to a positive-definite symmetric matrix Σ:

∥x∥2
Σ = 〈Σ−1x, x〉

Then:

KL
(
Np (µ0,Σ0)∥Np (µ1,Σ1)

)= 1

2

[
∥µ0 −µ1∥2

Σ1
− log

∣∣Σ−1
1 Σ0

∣∣+Tr
(
Σ−1

1 Σ0
)−p

]
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2 Contribution: Adding dependency between sites

2.1 Method of moments

To better understand the PLN distribution, and also to understand the impact of the VEM algorithm on
the inference of the model, a naive idea is to compute the expectation and covariance matrix.

We can easily solve the system and find the unknown parameters:

Σ= log
(

J +∆−1
Y (ΣY −∆Y )∆−1

Y

)
µ= logµY − 1

2
diagΣ

then estimate ΣY and µY by their respective empirical means.

2.1.1 Theoretical performance analysis

Two problems arise:

• The data must verify the over-dispersion hypothesis empirically to be able to compute the
logarithm.

• It seems hard to control the bias created by estimating ∆−1
Y . By using a Taylor series expansion, one

can prove that is impossible to estimate the inverse of a Poisson parameter without bias.

2.1.2 Numerical performance analysis

The moments estimators perform badly in comparison to the VEM estimators, especially as there is no
reason that the empirical moments verify the over-dispersion condition.

In order to obtain better results, we could try to remove the zeroes in the counts, then estimate the Poisson
parameters, before adding the correct number of zeroes.

However, they could be an alternative for the initialization of the VEM algorithm.
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2.2 The new model

(Z1, . . . , Zn) ∼ SAR(µ,Σ,Φ)

and
Yi j |Zi

⊥∼P (exp Zi j ),1 ≤ j ≤ p,1 ≤ i ≤ n

IfΦ= 0, then we retrieve the classical PLN model.

2.3 Computing the modified ELBO

Let us take the same approach as for non-AR PLN, and choose the set Q of Gaussian variational dis-
tributions. This means that we will try to have correct results with the simplifying hypothesis that the
variational variables Zi ∼Qψi ,1 ≤ i ≤ n are mutually independent.

If this fails, there are other approaches, like choosing an AR structure for the variational variables.

Let us denote θ = (µ,Σ) and ψ= (m1, . . . ,mn ,S1, . . . ,Sn) such that Qψ ∈Q.

Also, to be more general we place ourselves in regression, with B = (β1| . . . |βp ) ∈Rd×p and µi = B⊤Xi ,1 ≤
i ≤ n (for the non-conditional version, it suffices to take µ1 = ·· · =µn =µ). Then:

J (θ,ψ;Y) = Eψ[ℓθ(Y|Z)+ℓθ(Z)−ℓψ(Z)|Y]

=
n∑

i=1
Eψi [ℓ(ψ;Yi |Zi )|Yi ]+Eψi−1,ψi [ℓ(θ,ψi−1,ψi ; Zi−1)]−Eψ[ℓ(ψ;Z)]

J (θ,ψ;Y) =
n∑

i=1
Ji (θ,ψi−1,ψi ;Yi )

where:

Ji (θ,ψi−1,ψi ;Yi ) =
p∑

j=1
E
ψ

j
i

[
ℓ(Y j

i |Z j
i )

∣∣∣Y j
i

]
−Eψi−1

[
KL

(
Np (mi ,Si )

∥∥Np (Φ(Zi−1 −µi−1)+µi ,Σi )
)]

Finally, we compute the ELBO:

Proposition 2.1. For 1 ≤ i ≤ n:

Ji (θ,ψi−1,ψi ;Yi ) =−
∥∥∥exp

(
mi + s2

i
2

)∥∥∥
1
+〈mi ,Yi 〉−∥ log(Yi !)∥1

− 1

2
∥µi −mi −Φ(µi−1 −mi−1)∥2

Σi
+ 1

2
log |Ωi Si |− 1

2
〈Ωi ,Si +ΦSi−1Φ

⊤〉+ p

2

where we defined:

• µ0 = m0 = 0, S0 = 0
• Σ1 =Σ, Σi =Σε =Σ−ΦΣΦ⊤ for 2 ≤ i ≤ n
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• Ωi =Σ−1
i

• si = diagSi .

Remark. Fortunately, when we forceΦ= 0, we retrieve the non-AR ELBO.

2.4 Implementation

The PLNmodels package is written in R, with two backends, one in torch, the other in C++ using nlopt.

2.4.1 Initialisation

There are multiple possibilities. Either we start with a VE-step and we initialise β, Σ andΦ, by:

• the method of moments
• their estimation through non-AR VEM
• a non-zero random value (in the case ofΦ)

or we start with an M-step and we initialise m1, . . . ,mn ,S1, . . . ,Sn and β using a Poisson regression, which
is the current choice for the initialization of the non-AR VEM algorithm.

For Φ, we could also use AR estimation techniques, after estimating Z with non-AR VEM or Poisson
regression.

2.4.2 M-step

Since there were explicit expressions for the zeroes of the objective function for classical PLN, we should
hope the same goes for PLN-AR. But the AR parameterΦ complicates the differentiation. Explicit expres-
sions are useful because they allow us to compute the updates for the C++ backend, and a profiled ELBO,
useful to speed up the torch backend.

Let us denote S̃ = (s1| . . . |sn) the matrix whose rows are the diagonals of the S1, . . . ,Sn .

• µ:
∇µi J (θ,ψ) = (ΦΩi+1Φ

⊤−Ωi )(µi −mi )+ΩiΦ(µi−1 −mi−1)+Φ⊤Ωi+1(µi+1 −mi+1)

• Σ: Let us denote:

Fi = 1

2
Ωi

[
(µi −mi −Φ(µi−1 −mi−1))(µi −mi −Φ(µi−1 −mi−1))⊤+Si +ΦSi−1Φ

⊤−Σi
]
Ωi

Then:

∇Σ J (θ,ψ) = F1 +
n∑

i=2
Fi +Φ⊤FiΦ
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• Φ:

∇Φ J (θ,ψ) =Ωε

n∑
i=2
ΦΣ−ΦSi−1 + (Si +ΦSi−1Φ

⊤)ΩεΦΣ

− (µi −mi −Φ(µi−1 −mi−1))(µi−1 −mi−1)⊤

− (µi −mi −Φ(µi−1 −mi−1))(µi −mi −Φ(µi−1 −mi−1))⊤ΩεΦ
⊤Σ

2.4.3 VE-step

We need to compute the gradients, but their solutions are non-explicit, so we will use the nlopt optimisa-
tion library in C++.

• M:

∇M J (θ,ψ) =−exp(M+ 1

2
S̃)+Y−e⊤1 Ω(µ1 −M⊤e1)

−Ωε(µ−M−Φ(µ−M)N)+Φ⊤Ωε(µ−M−Φ(µ−M)N)N⊤

where N =


0 1 . . . 0
...

. . .
. . .

...
...

. . .
. . . 1

0 . . . . . . 0

.

• Si :

2∇Si J (θ,ψ) = S−1
i −exp(mi + 1

2
diagSi )− (Ωi +Φ⊤Ωi+1Φ)

2.5 Study of the conditional distribution Z |Y

• In dimension 1, the conditional distribution is almost Gaussian around log(Y ). Using a Taylor
development, we obtain expressions of its expectation and its variance with the Lambert W implicit
functions:

– µ(y) = y −W (e y ) = log y − log y
y +o(1)

– σ2(y) = (1+W (e y ))−1

• In dimension p > 1, it is hard to compute the parameters of this Gaussian approximation.
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3 Application: Variation in Recombination Rate and
Its Genetic Determinism in Sheep Populations

This dataset on crossovers was suggested and studied in Petit et al. (2017) and Johnston, Huisman, and
Pemberton (2018).

3.1 Context

Let us quickly describe the dataset:

• [chrom] are the chromosome indices of the sheep.
• [wstart – wstop] are the window spans (unit: megabases) which correpond to the sites.
• [nco_[species]_[genre]] are the number of crossovers for each species.
• [coverage_[species]_[genre]] is a measurement of the offset.

There are no covariates, so this will be PLN-AR estimation only.

Definition 3.1.

• A crossover is a reciprocal recombination (exchange of genetic information) between two homol-
ogous chromosomes during meiosis. It allows alleles to be exchanged between chromosomes,
thereby contributing to genetic diversity.

• The recombination rate is the frequency of crossovers in a given window span.

The very low probability of a crossover (around 10−8) justifies the use of a Poisson-based regression model.
The parameter β will model the mean recombination rate along the genome and Σ the deviation around
this mean.

Why do we need a modified PLN-AR model:

• Empirically observations of a one-dimensional dependency along the sites of the genome.
• Φwill model this one-dimensional spatial dependency between one site and the next.
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3.2 Exploration

First, let us clean and discover this dataset.

Cleaning

The dataset needs to be pivoted from long to wide format. We also rescale the offset by window size.

Import

We perform a sanity check, that is to say that we check the number of crossovers in regions with no
coverage information. It should hopefully be 0 and we confirm that it is.

#> # A tibble: 2 x 8
#> chrom wstart wstop region_name population sex nco coverage
#> <fct> <dbl> <dbl> <glue> <chr> <chr> <int> <dbl>
#> 1 23 62 63 23:62000000-63000000 Soay F 0 0
#> 2 23 62 63 23:62000000-63000000 Soay M 0 0

NAs removal

We remove them to avoid numerical problems during the inference.

3.2.0.1 One-dimensional plot
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3.2.0.2 Classical PLN fitting

First, we carry out a classical non-AR VEM estimation, and we analyze how it fits to the original data.

Comparing the fitted and original data
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3.3 Goodness of fit

Once implemented, we shall perform various tests to check the goodness of fit of the predicted and
original values, and compare them between the PLN and PLN-AR models:

• Coefficient of determination
• Prediction error and cross-validation (Manhattan distance or mean squared error in centered

log-ratio coordinates)
• Q-Q plot
• Shapiro-Wicks

3.4 Analysis

Finally, we check that the auto-regressive structure explains the spatial shape of the crossover data.
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