The \Gamma operator has the following properties (assuming that \mathbb E(\|Y\|^2)<\infty):
\displaystyle \langle \Gamma f, g\rangle=\mathbb E\left(\langle Y-\mu, f\rangle\langle Y-\mu, g\rangle\right) for all f, g\in L^2[0, T];
\Gamma=\mathbb E (Y\otimes Y)-\mu\otimes\mu
it is a self-adjoint operator (\Gamma=\Gamma^*, where \Gamma^* is the adjoint operator) because the kernel \gamma(\cdot, \cdot) is symmetric and non-negative (\langle \Gamma u, u \rangle \geq 0);
it has finite trace: \|\Gamma\|_{TR}=\sum_{j\geq 1}\langle (\Gamma^*\Gamma)^{1/2} e_j, e_j\rangle=\mathbb E\|Y\|^2<\infty;
is a Hilbert-Schmidt operator: |\Gamma\|^2_{HS}=\sum_{j\geq 1}\|\Gamma e_j\|^2<\infty,
where \{e_j\}_{j\geq 1} is any orthonormal basis of L^2[0, T].