Bibliographie

Arjovsky, Martin, Soumith Chintala, and Léon Bottou. 2017. “Wasserstein Generative Adversarial Networks.” In Proceedings of the 34th International Conference on Machine Learning, 214–23. PMLR. https://doi.org/10.48550/arXiv.1701.07875.
Courty, Nicolas, Rémi Flamary, Amaury Habrard, and Alain Rakotomamonjy. 2017. “Joint Distribution Optimal Transportation for Domain Adaptation,” no. arXiv:1705.08848 (October). https://doi.org/10.48550/arXiv.1705.08848.
Courty, Nicolas, Rémi Flamary, Devis Tuia, and Alain Rakotomamonjy. 2016. “Optimal Transport for Domain Adaptation,” no. arXiv:1507.00504 (June). https://doi.org/10.48550/arXiv.1507.00504.
Cuturi, Marco. 2013. “Sinkhorn Distances: Lightspeed Computation of Optimal Transport.” In Advances in Neural Information Processing Systems. Vol. 26. Curran Associates, Inc. https://doi.org/10.48550/arXiv.1306.0895.
Damodaran, Bharath Bhushan, Benjamin Kellenberger, Rémi Flamary, Devis Tuia, and Nicolas Courty. 2018. “DeepJDOT: Deep Joint Distribution Optimal Transport for Unsupervised Domain Adaptation.” In Computer Vision – ECCV 2018, edited by Vittorio Ferrari, Martial Hebert, Cristian Sminchisescu, and Yair Weiss, 467–83. Lecture Notes in Computer Science. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-01225-0_28.
Franklin, Joel, and Jens Lorenz. 1989. “On the Scaling of Multidimensional Matrices.” Linear Algebra and Its Applications, Special issue dedicated to alan j. hoffman, 114–115 (March): 717–35. https://doi.org/10.1016/0024-3795(89)90490-4.
Tarjan, Robert E. 1997. “Dynamic Trees as Search Trees via Euler Tours, Applied to the Network Simplex Algorithm.” Mathematical Programming 78 (2): 169–77. https://doi.org/10.1007/BF02614369.
Vayer, Titouan, Laetitia Chapel, Remi Flamary, Romain Tavenard, and Nicolas Courty. 2020. “Fused Gromov-Wasserstein Distance for Structured Objects.” Algorithms 13 (99): 212. https://doi.org/10.3390/a13090212.
Villani, Cédric. 2003. Topics in Optimal Transportation. Graduate Studies in Mathematics. Providence, Rhode Island: American Mathematical Society.
———. 2009. Optimal Transport: Old and New. Vol. 338. Grundlehren Der Mathematischen Wissenschaften. Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-540-71050-9.